
CS 475/575 -- Spring Quarter 2017

Project #4

Functional Decomposition

100 Points

Due: May 16

This page was last updated: May 3, 2017

Introduction

This project will use parallelism, not for speeding data computation, but for programming

convenience. You will create a month-by-month simulation in which each agent of the

simulation will execute in its own thread where it just has to look at the state of the world around

it and react to it.

You will also get to exercise your creativity by adding an additional "agent" to the simulation,

one that impacts the state of the other agents and is impacted by them.

Requirements

1. You are creating a month-by-month simulation of a grain-growing operation. The amount

the grain grows is affected by the temperature, amount of precipitation, and the number

of "graindeer" around to eat it. The number of graindeer depends on the amount of grain

available to eat.

2. The "state" of the system consists of the following global variables:
3.
4. int NowYear; // 2017 - 2022

5. int NowMonth; // 0 - 11

6.
7. float NowPrecip; // inches of rain per month

8. float NowTemp; // temperature this month

9. float NowHeight; // grain height in inches

10. int NowNumDeer; // number of deer in the current

population

11. Your basic time step will be one month. Interesting parameters that you need are:
12.

13. const float GRAIN_GROWS_PER_MONTH = 8.0;

14. const float ONE_DEER_EATS_PER_MONTH = 0.5;

15.

16. const float AVG_PRECIP_PER_MONTH = 6.0; // average

17. const float AMP_PRECIP_PER_MONTH = 6.0; // plus or minus

18. const float RANDOM_PRECIP = 2.0; // plus or minus

noise

19.

20. const float AVG_TEMP = 50.0; // average

21. const float AMP_TEMP = 20.0; // plus or minus

22. const float RANDOM_TEMP = 10.0; // plus or minus

noise

23.

24. const float MIDTEMP = 40.0;

25. const float MIDPRECIP = 10.0;

Units of grain growth are inches.

Units of temperature are degrees Fahrenheit (°F).

Units of precipitation are inches.

26. Because you know ahead of time how many threads you will need (3 or 4), start the

threads with a parallel sections directive:
27.

28. omp_set_num_threads(4); // same as # of sections

29. #pragma omp parallel sections

30. {

31. #pragma omp section

32. {

33. GrainDeer();

34. }

35.

36. #pragma omp section

37. {

38. Grain();

39. }

40.

41. #pragma omp section

42. {

43. Watcher();

44. }

45.

46. #pragma omp section

47. {

48. MyAgent(); // your own

49. }

50. } // implied barrier -- all functions must return in order

51. // to allow any of them to get past here

52. The temperature and precipitation are a function of the particular month:
53.

54. float ang = (30.*(float)NowMonth + 15.) * (M_PI / 180.);

55.

56. float temp = AVG_TEMP - AMP_TEMP * cos(ang);

57. unsigned int seed = 0;

58. NowTemp = temp + Ranf(&seed, -RANDOM_TEMP, RANDOM_TEMP);

59.

60. float precip = AVG_PRECIP_PER_MONTH + AMP_PRECIP_PER_MONTH * sin(ang

);

61. NowPrecip = precip + Ranf(&seed, -RANDOM_PRECIP, RANDOM_PRECIP);

62. if(NowPrecip < 0.)

63. NowPrecip = 0.;

To keep this simple, a year consists of 12 months of 30 days each. The first day of winter

is considered to be January 1. As you can see, the temperature and precipitation follow

cosine and sine wave patterns with some randomness added.

64. Starting values are:
65.

66. // starting date and time:

67. NowMonth = 0;

68. NowYear = 2017;

69.

70. // starting state (feel free to change this if you want):

71. NowNumDeer = 1;

72. NowHeight = 1.;

73.

74. In addition to this, you must add in some other phenomenon that directly or

indirectly controls the growth of the grain and/or the graindeer population. Your

choice of this is up to you.

75. You are free to tweak the constants to make everything turn out "more interesting".

Use of Threads

As shown here, you will spawn three threads (four, when you add your own agent):

The GrainGrowth and GrainDeer threads will each compute the next grain height and the next

number of deer based on the current set of global state variables. They will compute these into

local, temporary, variables. They both then will hit the DoneComputing barrier.

At that point, both of those threads are done computing using the current set of global state

variables. Each thread should then copy the local variable into the global version. All 3 threads

will then hit the DoneAssigning barrier.

http://web.engr.oregonstate.edu/~mjb/cs575/Projects/grain.jpg

At this point, the Watcher thread will print the current set of global state variables, increment the

month count, and then use the new month to compute the new Temperature and Precipitation.

Note that the GrainGrowth and GrainDeer threads can't proceed because there is a chance they

would re-compute the global state variables before they are done being printed. All 3 threads will

then hit the DonePrinting barrier.

After spawning the threads, the main program should wait for the parallel sections to finish.

Each thread should return when the year hits 2023 (giving us 6 years, or 72 months, of

simulation).

Remember that this description is for the core part of the project, before you add your own agent

to the simulation. That will involve another thread and some additional interaction among the

global state variables.

Quantity Interactions

The Carrying Capacity of the graindeer is the number of inches of height of the grain. If the

number of graindeer exceeds this value at the end of a month, decrease the number of graindeer

by one. If the number of graindeer is less than this value at the end of a month, increase the

number of graindeer by one.

Each month you will need to figure out how much the grain grows. If conditions are good, it will

grow by GRAIN_GROWS_PER_MONTH. If conditions are not good, it won't.

You know how good conditions are by seeing how close you are to an ideal

temperature (°F) and precipitation (inches). Do this by computing a

Temperature Factor and a Precipitation Factor like this:

Note that there is a standard math function, exp(x), to compute e-to-the-x:

float tempFactor = exp(-SQR((NowTemp - MIDTEMP) / 10.));

float precipFactor = exp(-SQR((NowPrecip - MIDPRECIP) / 10.));

I like squaring things with another function:

float

SQR(float x)

{

 return x*x;

}

http://web.engr.oregonstate.edu/~mjb/cs575/Projects/graineqn.jpg

You then use tempFactor and precipFactor like this:

 NowHeight += tempFactor * precipFactor * GRAIN_GROWS_PER_MONTH;

 NowHeight -= (float)NowNumDeer * ONE_DEER_EATS_PER_MONTH;

Be sure to clamp NowHeight against zero.

Structure of the Simulation Functions

Each simulation function will have a structure that looks like this:

while(NowYear < 2023)

{

 // compute a temporary next-value for this quantity

 // based on the current state of the simulation:

 . . .

 // DoneComputing barrier:

 #pragma omp barrier

 . . .

 // DoneAssigning barrier:

 #pragma omp barrier

 . . .

 // DonePrinting barrier:

 #pragma omp barrier

 . . .

}

Doing the Barriers on Visual Studio

You will probably get this error when doing this type of project in Visual Studio:

'#pragma omp barrier' improperly nested in a work-sharing construct

The OpenMP specifications says: "All threads in a team must execute the barrier region."

Presumably this means that placing corresponding barriers in the different functions does not

qualify, but somehow gcc/g++ are OK with it.

Here is a work-around. Instead of using the

#pragma omp barrier
line, use this:

WaitBarrier();

You must call InitBarrier(n) as part of your setup process, where n is the number of threads

you will be waiting for at this barrier. Presumably this is 3 before you add your own quantity and

is 4 after you add your own quantity.

I'm not particularly proud of this code, but it seems to work. To make this happen, first declare

the following global variables:

omp_lock_t Lock;

int NumInThreadTeam;

int NumAtBarrier;

int NumGone;

Here are the function prototypes:

void InitBarrier(int);

void WaitBarrier();

Here is the function code:

// specify how many threads will be in the barrier:

// (also init's the Lock)

void

InitBarrier(int n)

{

 NumInThreadTeam = n;

 NumAtBarrier = 0;

 omp_init_lock(&Lock);

}

// have the calling thread wait here until all the other threads catch up:

void

WaitBarrier()

{

 omp_set_lock(&Lock);

 {

 NumAtBarrier++;

 if(NumAtBarrier == NumInThreadTeam)

 {

 NumGone = 0;

 NumAtBarrier = 0;

 // let all other threads get back to what they were

doing

 // before this one unlocks, knowing that they might

immediately

 // call WaitBarrier() again:

 while(NumGone != NumInThreadTeam-1);

 omp_unset_lock(&Lock);

 return;

 }

 }

 omp_unset_lock(&Lock);

 while(NumAtBarrier != 0); // this waits for the nth thread to

arrive

 #pragma omp atomic

 NumGone++; // this flags how many threads have

returned

}

Random Numbers

How you generate the randomness is up to you. As an example (which you are free to use), Joe

Parallel wrote a couple of functions that return a random number between a user-given low value

and a high value (note that the name overloading is a C++-ism, not a C-ism):

#include <stdlib.h>

unsigned int seed = 0; // a thread-private variable

float x = Ranf(&seed, -1.f, 1.f);

. . .

float

Ranf(unsigned int *seedp, float low, float high)

{

 float r = (float) rand_r(seedp); // 0 - RAND_MAX

 return(low + r * (high - low) / (float)RAND_MAX);

}

int

Ranf(unsigned int *seedp, int ilow, int ihigh)

{

 float low = (float)ilow;

 float high = (float)ihigh + 0.9999f;

 return (int)(Ranf(seedp, low,high));

}

Results

Turn in your code and your PDF writeup. Be sure your PDF is a file all by itself, that is, not part

of any zip file. Your writeup will consist of:

1. What your own-choice quantity was and how it fits into the simulation.

2. A table showing values for temperature, precipitation, number of graindeer, height of the

grain, and your own-choice quantity as a function of month number.

3. A graph showing temperature, precipitation, number of graindeer, height of the grain, and

your own-choice quantity as a function of month number. Note: if you change the units to

°C and centimeters, the quantities might fit better on the same set of axes.

cm = inches * 2.54

°C = (5./9.)*(°F-32)

This will make your heights have larger numbers and your temperatures have smaller

numbers.

4. A commentary about the patterns in the graph and why they turned out that way. What

evidence in the curves proves that your own quantity is actually affecting the simulation?

Example Output

Grading:

Feature Points

Simulate grain growth and graindeer population 20

Simulate your own quantity 20

Table of Results 10

Graph of Results 20

Commentary 30

Potential Total 100

http://web.engr.oregonstate.edu/~mjb/cs575/Projects/graingraph.jpg

